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A Mixed Integer Approach for the Solution of
Hybrid Model Predictive Control Problems

Iman Nodozi and Ricardo G. Sanfelice

Abstract—This paper presents an algorithm for solving the
optimization problem associated with hybrid model predictive
control for a class of discretized hybrid control systems. The
proposed approach consists of reformulating the optimal control
problem as a mixed integer quadratic problem (MIQP), which
can be solved using well-established algorithms in the literature.
Specifically, the given discretized hybrid control system is trans-
formed into a mixed logical dynamical (MLD) system that, for the
class of discretized hybrid control systems considered, gives rise
to an MIQP. The MLD model is obtained through an intermediate
step that transforms the discretized hybrid control system into
a discrete-time control system. The approach is illustrated in
several examples.

I. INTRODUCTION

Model predictive control (MPC) is a powerful feedback
control technique as it assures asymptotic stability with opti-
mality and constraint satisfaction [1]. Being an optimization-
based technique, MPC tends to be computationally expensive
and heavily depends on the performance of the optimization
scheme employed. It is well documented that MPC may
require substantial amount of time to compute due to the time
required for the optimization scheme to terminate [2], [3].

As the optimal control problem (OCP) that is to be
solved at each control recomputation event is, in general, a
nonlinear programming problem, there are many approaches
and algorithms available in the literature. For instance, the
OCP associated with MPC can be formulated to predict the
state and perform optimization sequentially or simultaneously.
The OCP, itself, can be solved using a myriad of methods,
such as sequential quadratic programming techniques, penalty
methods, Lagrangian-based approaches, interior point meth-
ods, among others. The survey [4] outlines these approaches
and solution methods. These techniques are applicable to
important classes of MPC problems for continuous-time and
discrete-time systems. On the other hand, techniques for the
solution of MPC problems for hybrid systems are much less
developed. When the hybrid system is modeled as a piecewise
affine (PWA) system or a mixed logical dynamical (MLD)
system, and the cost functions are quadratic, the OCP can be
formulated as a mixed-integer quadratic problem (MIQP) [5],
[6]. This approach is quite powerful as it enables the use of
MIQP solvers available in the literature.

Motivated by the success of formulating the OCP as an
MIQP for hybrid systems modeled as PWA or MLD systems,
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we propose an MIQP approach for the solution to the hybrid
MPC problem formulated in [7], [8], [9]. In these articles, hy-
brid systems are modeled by hybrid equations, which are given
in terms of constrained differential and difference equations.
A general theory of robust asymptotic stability and hybrid
control design for such class of systems is available in [10]
and [11], respectively, where the versatility and generality of
the framework is displayed in several applications. Although
key theoretical aspects of hybrid MPC are addressed in [7],
[8], [9], the numerical solution of the associated (hybrid) OCP
is not investigated therein.

As a first step towards efficient methods for the solution to
such problems, we consider the discretized version of hybrid
equations considered in [12] (see also [13]) and the hybrid
MPC problem therein and propose an efficient method to
compute solutions to the associated OCP. To accommodate
the binary variables involved, we employ the so-called Mc-
Cormick Relaxation to reformulate the hybrid MPC problem
as an MIQP. For the class of discretized hybrid equations
considered—specifically, those with linear flow and jump
maps, and flow and jump sets given in terms of inequalities
involving a function of the state and input— and following the
ideas in [14], we derive a (discrete-time) MLD system model
of the hybrid equation and formulate the OCP associated with
hybrid MPC as an MIQP. Our approach consists of trans-
forming the discretized hybrid equation into a discrete-time
system with binary variables, followed by its reformulation as
an MLD system. To mathematically formalize these transfor-
mations, we establish equivalences between the trajectories (or
solutions) to each system. With such relationships in place, we
relate the OCP solution associated with the equivalent MLD
system—which can be obtained using MIQP solvers— to the
solution to the OCP associated with the discretized hybrid
equation. Consequently, our results provide an MIQP solution
to hybrid MPC for the class of systems considered. In addition,
we present an algorithm that implements our approach and
we illustrate it in several examples, namely, the canonical
bouncing ball system and a congestion control mechanism
used in models of transmission control protocols.

Organization: The outline of this paper is as follows. Sec. II
presents the definitions of discretized hybrid control systems,
mixed logical dynamical systems, and their solutions. The
MPC problem for discretized hybrid dynamical system is
formulated in Sec. III. In Sec. IV, we detail the mixed integer
formulation of discretized hybrid model predictive control,
followed by numerical simulations in Sec. V. Concluding
remarks are provided in Sec. VI. Due to space constraints,
all proofs are given in [15].
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II. PRELIMINARIES

A. Notation

We denote by R the set of real numbers, R≥0 its nonnegative
subset, and by N the set of nonnegative integers. Boolean “or,”
“and,” and “not” are denoted by ∨, ∧, and ∼, respectively. The
standard projection onto Rn is defined by function Π : Rn×
Rp → Rn, such that Π(x, y) = x. The n-dimensional identity
matrix is denoted by In.

B. Hybrid Control Systems

In this paper, we consider an affine discretized hybrid
control system given by

Hd :

{
x+ = f(x, u) := Afx+Bfu+ cf (x, u) ∈ C
x+ = g(x, u) := Agx+Bgu+ cg (x, u) ∈ D,

(1)
where (x, u) ∈ C ∪ D =: X ⊂ Rn × Rm are the state and
the input of the system, respectively. The set C is called the
flow set, and D is called the jump set. The affine functions
f : C → Rn and g : D → Rn are the flow and jump maps,
respectively, and X is compact.

Definition 1: A set E ⊂ N × N is called a discrete
hybrid time domain if, for each (K,J) ∈ E, there exists a
nondecreasing sequence {kj}J+1

j=0 such that k0 = 0, kj+1 ∈
N for each j ∈ {1, 2, ..., J}, and

E ∩ ({0, 1, ...,K} × {0, 1, ..., J}) =

J⋃
j=0

Kj+1⋃
k=Kj

(k, j).

•
The state and input are presented by discrete hybrid time

(k, j) ∈ N×N, where k and j index the evolution during flow
and jumps, respectively.

Definition 2 (Solution pair [12]): A pair (x : domx→ Rn,
u : domu → Rm) is a solution pair to Hd if the following
conditions hold:

(S1) domx = domu is a discrete hybrid time domain.
(S2) (x(0, 0), u(0, 0)) ∈ X .
(S3) For each (k, j) ∈ domx such that (k + 1, j) ∈ domx,

x(k+1, j) = f(x(k, j), u(k, j)) (x(k, j), u(k, j)) ∈ C.

(S4) For each (k, j) ∈ domx such that (k, j + 1) ∈ domx,

x(k, j+1) = g(x(k, j), u(k, j)) (x(k, j), u(k, j)) ∈ D.

•
Throughout, ŜHd

(x0) is the set to solution pairs (x, u) of Hd

such that x(0, 0) = x0. The pair (L, J) ∈ dom(x, u) is called
the terminal time to the solution pair (x, u) if k ≤ K and
j ≤ J for all (k, j) ∈ dom(x, u).

C. Mixed Logical Dynamical Systems

A general MLD model is given by [14]

x̂+ = Ax̂+B1û+B2δ̂ +B3z +B4 (2)

subject to E2δ̂ + E3z ≤ E1û+ E4x̂+ E5, (3)

where x̂ ∈ Rn is the state and û ∈ Rm is the input of
the system. The auxiliary continuous and binary variables are
represented by z ∈ Rnd and δ̂ ∈ {0, 1}md , respectively.
All of these variables have binary and continuous values.
The matrices A, {Bi}4i=1, and {Ei}5i=1 have appropriate
dimensions.

The MLD model in (2)-(3) can be expressed as

HMLD :

{
x̂+ = Φ(z, δ̂, x̂, û)

Ψ(z, δ̂, x̂, û) ≤ 0,
(4)

where

Φ(z, δ̂, x̂, û) := Ax̂+B1û+B2δ̂ +B3z +B4,

Ψ(z, δ̂, x̂, û) := E2δ̂ + E3z − E1û− E4x̂− E5.
(5)

A solution to HMLD is defined as follows.
Definition 3: A function M 3 ` 7→

(
z(`), δ̂(`), x̂(`), û(`)

)
is a solution to HMLD if it satisfies

x̂(`+ 1) = Φ(z(`), δ̂(`), x̂(`), û(`)),

Ψ(z(`), δ̂(`), x̂(`), û(`)) ≤ 0
(6)

for all ` ∈ M, where M is of the form {0, 1, . . . ,K}, with
K finite, or equal to N. •

III. HYBRID MODEL PREDICTIVE CONTROL FOR
DISCRETIZED HYBRID CONTROL SYSTEMS

This section formulates a Model Predictive Control (MPC)
problem for discretized hybrid dynamical system given by Hd

in (1). Based on the framework given in [16], we first introduce
some details related to the MPC of discretized hybrid systems.

A. Prediction Horizon

A fixed end-time optimal control problem can be appro-
priately used in continuous/discrete-time MPC that optimal
controls are updated periodically, and each computed control
input has the same terminal time. But, due to the nature
of (discrete) hybrid time domains, using a fixed end-time
optimal control problem is restrictive. For (discretized) hybrid
dynamical systems, we must keep in mind that the solutions
might only flow or only jump, or combination of two, so the
prediction horizon that is defined must accommodate solutions
having different discrete hybrid time domains. To address these
issues, as in [16], we define the prediction horizon T ⊂ N×N
as

T := {(k, j) ∈ N× N : max{k, j} = τp} (7)

where τp is a given integer. Thus, for some τp ∈ {1, 2, . . .},
the terminal time (T, J) of every feasible solution pair satisfies
max{T, J} = τp.
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B. Cost Functional

Given a solution pair (x, u) to Hd with compact domain
and terminal time (L, J), let {Kj}J+1

j=0 be a nondecreasing

sequence such that dom(x, u) =
J⋃

j=0

Kj+1⋃
k=Kj

(k, j), and KJ+1 =

L, and X ⊂ Π(X ) be the terminal constraint set. If x(K,J) ∈
X , then the cost of the pair (x, u) is given by

J (x, u) :=
( J∑

j=0

Kj+1−1∑
k=Kj

LC(x(k, j), u(k, j))
)

+
( J−1∑

j=0

LD(x(k, j), u(k, j)
)

+ V (x(L, J)).

(8)

In (8), LC is called the flow cost and is defined on the
flow set C, LD is called the jump cost and is defined on the
jump set D, and V is called the terminal cost defined on the
terminal constraint set X .

C. Hybrid Optimal Control Problem

Given the terminal constraint set X and the prediction
horizon T , the minimization of the cost functional J is
performed over solution pairs of Hd with initial condition x0.

Problem 1: Given an initial condition x0 ∈ Rn,

minimize J (x, u)

subject to (x, u) ∈ ŜHd
(x0)

x(L, J) ∈ X
(L, J) ∈ T ,

(9)

where the constraints x(L, J) ∈ X and (L, J) ∈ T dictate
that solutions pairs have terminal conditions in X and terminal
times in T , respectively. •

If a solution pair (x, u) satisfies the constraints in (9) with
x(0, 0) = x0, then we call it a feasible solution. A feasible
solution is called the optimal solution if it minimizes J .

In the next section, we show that the modelHd and Problem
1 can be reformulated as a mixed integer quadratic problem
(MIQP) and solve it with an MIQP solver.

IV. A MIXED INTEGER FORMULATION OF
DISCRETIZED HYBRID MODEL PREDICTIVE CONTROL

We formulate a version of Problem 1 that can be solved
using mixed integer tools. To this end, we proceed as follows:

Step 1) The discretized hybrid control systemHd is converted
into a discrete-time control system, denoted H̃d;

Step 2) The new discrete-time control system H̃d is converted
into an MLD system, denoted HMLD;

Step 3) Problem 1 is formulated for HMLD and solved using
mixed integer tools.

The conversion in Step 1 is an intermediate step leading
to a model that can be recast as an MLD system. This
conversion is technical and is described in Appendix A. For

this reformulation to be possible, we impose the following
structure on the flow set and the jump set of Hd.

Assumption 1: The flow set C is given as

C = C1 ∪ C2 (10)

and the jump set D is given as

D = D1 ∩D2 (11)

where, for each i ∈ {1, 2},

Ci = {(x, u) ∈ X : hi(x, u)− σi ≤ 0}, (12)
Di = {(x, u) ∈ X : hi(x, u) + σi ≥ 0}, (13)

hi : X → R is defined as hi(x, u) = h>i1x+h>i2u, with hi1 and
hi2 vectors of appropriate dimension and σi ≥ 0 is a constant.
•
For each i ∈ {1, 2}, we define set-valued maps Ui : Ci∪Di ⇒
{0, 1} as follows:

Ui(x, u) :=

 1 if (x, u) ∈ Ci \Di

0 if (x, u) ∈ Di \ Ci

{0, 1} if (x, u) ∈ Ci ∩Di,
(14)

We exploit the MLD system structure enabled by Assump-
tion 1 to formulate an MIQP version of Problem 1. For this
purpose, we impose the following assumption on the flow cost,
jump cost, and terminal cost in the cost functional J in (8).

Assumption 2: The flow cost LC , the jump cost LD, and
the terminal cost V are given by

LC(x, u) = x>Qcx+ u>Rcu,

LD(x, u) = x>Qdx+ u>Rdu, V (x) = x>Px
(15)

for each (x, u) ∈ X , where P � 0, Qc � 0, Rc � 0, Qd � 0,
and Rd � 0. •

A. Recasting Hd as an MLD system

Using McCormick Relaxation (also known as binary de-
composition) from [17] and [18], we formulate the following
lemma that allows for the discrete-time system Hd in (1) to
be transformed into an MLD system HMLD as in (4). The
proof of the next Lemma is given in [15].

Lemma 1: Consider a compact set Λ ⊂ Rn and a continuous
function p : Λ→ R. Define

M := max
x∈Λ

p(x), m := min
x∈Λ

p(x). (16)

Given functions δ : Λ→ {0, 1} and z : Λ→ R,

z(x) = δ(x)p(x) ∀x ∈ Λ (17)

holds, if and only if, for each x ∈ Λ, the following hold:

z(x) ≤Mδ(x), (18a)
z(x) ≥ mδ(x), (18b)
z(x) ≤ p(x)−m(1− δ(x)), (18c)
z(x) ≥ p(x)−M(1− δ(x)). (18d)

�
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Now, we are ready to formulate an MLD system associated
with the discretized hybrid system Hd. See [15] for a proof.

Theorem 1: Suppose the discretized hybrid dynamical sys-
tem Hd in (1) with data (C,Af , Bf , cf , D,Ag, Bg, cg) satis-
fies Assumption 1 and X is a compact set. Let A,Bi, Ej for
all i ∈ {1, . . . 4} and j ∈ {1, . . . , 5} in (5) take the following
values:

A := Ag, B1 := Bg, B2 :=
[
cf − cg cf − cg

]
,

B3 :=
[
Af −Ag Bf −Bg cf − cg

]
, B4 := cg,

E1 :=



0
0
0
0
0
0
0
0
h12

−h12

h22

−h22

0
Im
0
−Im



, E2 :=



0 0
−1 0
0 −1
1 1
−M1 −M1

−M2 −M2

m1 m1

m2 m2

m31 + σ1 0
M31 − σ1 0

0 m32 + σ2

0 M32 − σ2

−m1 −m1

−m2 −m2

M1 M1

M2 M2



,

E3 :=



0 0 −In
0 0 In
0 0 In
0 0 −In
In 0 −M1

0 In −M2

−In 0 m1

0 −In m2

0 0 0
0 0 0
0 0 0
0 0 0
In 0 −m1

0 In −m2

−In M1

0 In M2



, E4 :=



0
0
0
0
0
0
0
0
h11

−h11

h21

−h21

In
0
−In

0



, E5 :=



0
0
0
1
0
0
0
0
σ1

M31

σ2

M32

−m1

−m2

M1

M2



,

(19)
where

M1 := max{x : (x, u) ∈ X}, m1 := min{x : (x, u) ∈ X},
M2 := max{ũ : (x, u) ∈ X}, m2 := min{u : (x, u) ∈ X},
M31 := max{h1(x, u) : (x, u) ∈ X},
m31 := min{h1(x, u) : (x, u) ∈ X},
M32 := max{h2(x, u) : (x, u) ∈ X},
m32 := min{h2(x, u) : (x, u) ∈ X},

(20)
where σ1, σ2, h11, h12, h21, h22, h1, h2 are given parameters
and functions come from (10) and (11). Let Hd be defined as
in (1). Then, for each solution (k, j) 7→ (x(k, j), u(k, j)) to
Hd, the function ` 7→

(
z(`), δ̂1(`), δ̂2(`), x̂(`), û(`)

)
is defined

as 

δ̂1(`) ∈ Uf1(x(k, j), u(k, j)),

δ̂2(`) ∈ Uf2(x(k, j), u(k, j)),

û(`) := u(k, j),

x̂(`) := x(k, j),

z(`) =

z1(`)
z2(`)
z3(`)

 :=

(δ̂1(`) + δ̂2(`)− δ̂1(`)δ̂2(`))x(k, j)

(δ̂1(`) + δ̂2(`)− δ̂1(`)δ̂2(`))u(k, j)

δ̂1(`)δ̂2(`)

 ,

(21a)

(21b)
(21c)
(21d)

(21e)

for each ` = k + j with (k, j) ∈ dom(x, u) is a solution to
HMLD in (4) with

Ψ(z, δ̂1, δ̂2, x̂, û) =



−z3 r1

z3 − δ̂1 r2

z3 − δ̂2 r3

−z3 + δ̂1 + δ̂2 − 1 r4

z1 −M1(δ̂1 + δ̂2 + z3) r5

z2 −M2(δ̂1 + δ̂2 + z3) r6

m1(δ̂1 + δ̂2 + z3)− z1 r7

m2(δ̂1 + δ̂2 + z3)− z2 r8

(m31 + σ1)δ̂1 − h1(x̂, û)− σ1 r9

(M31 − σ1)δ̂1 + h1(x̂, û)−M31 r10

(m32 + σ2)δ̂2 − h2(x̂, û)− σ2 r11

(M32 − σ2)δ̂2 + h2(x̂, û)−M32 r12

z1 − x̂+m1(1− (δ̂1 + δ̂2 + z3)) r13

z2 − û+m2(1− (δ̂1 + δ̂2 + z3)) r14

x̂− z1 −M1(1− (δ̂1 + δ̂2 + z3)) r15

û− z2 −M2(1− (δ̂1 + δ̂2 + z3)) r16



.

(22)
and

Φ(z, δ̂1, δ̂2, x̂, û) = (Af −Ag)z1 + (Bf −Bg)z2

+(cf − cg)(δ̂1 + δ̂2 + z3) +Agx̂+Bgû+ cg
(23)

defined for each z = (z1, z2, z3) ∈ Rn+m × {0, 1} and
δ̂ = (δ̂1, δ̂2) ∈ {0, 1}2. Furthermore, for each solution
` 7→

(
z(`), δ̂1(`), δ̂2(`), x̂(`), û(`)

)
to HMLD, the function

(k, j) 7→ (x(k, j), u(k, j)) defined as{
x(k, j) := x̂(`),

u(k, j) := û(`),

(24a)
(24b)

for each k =
∑̀
i=1

(δ̂1(i) + δ̂2(i) − δ̂1(i)δ̂2(i)) and j = ` − k

with ` ∈ dom(z, δ̂1, δ̂2, x̂, û), is a solution to Hd. �

The system in the following example is based on [14,
Example 4.1], but modified such that the intersection between
C and D is nonempty and the overlap is adjustable by the
parameter σ. We relate a solution of Hd in (1) to a solution of
HMLD in (4) via Theorem 1. Then, we find the MLD solution
using an MIQP solver [19].
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Fig. 1: A trajectory resulting from linear discretized hybrid
system of the Example 1 that transformed into MLD system.

Fig. 2: Binary variable ρ(δ̂1, δ̂2) obtained from simulation
in of the Example 1.

Example 1: Consider the discretized hybrid dynamical
system Hd in (1) with n = 2, m = 1, and data
(Af , Bf , Ag, C,D) given by

Af =

[
0.5 −0.86
0.86 0.5

]
, Bf =

[
0
1

]
, Ag =

[
0.4 0.69
−0.69 0.4

]
,

Bg =

[
0
1

]
, H1 =

[
1 0

]
, H2 = 0, σ = 0.1,

cf =

[
0
0

]
, cg =

[
0
0

]
,

(25)
and

X = {(x, u) | x ∈ [−10, 10]2, u ∈ [−1, 1]}.

We substitute the parameters from (25) into (19) to obtain
the parameters of the corresponding MLD system. Then, we
find a solution to this MLD system using an MIQP solver.
As shown in Fig. 1 and 2, the obtained solution starting from
x(0, 0) = (−1,−1) is a solution to the discretized hybrid
system given in (25). Figures confirm that, when (x, u) ∈
C \ D, then ρ(δ̂1, δ̂2) = 1 and the solution flows according
to x+ = f(x, u) = Afx + Bfu. Furthermore, when (x, u) ∈
D \C, then ρ(δ̂1, δ̂2) = 0 and the solution jumps according to
x+ = g(x, u) = Agx+Bgu. Finally, if (x, u) ∈ C ∩D, then
ρ(δ̂1, δ̂2) ∈ {0, 1} and the solution will either jump or flow. 1

�

1Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/HybridMPCMLD2Dsystem.git

B. MIQP version of the Hybrid Optimal Control Problem

Now, we use Theorem 1, to convert the hybrid optimal
control problem in Problem 1 to an MIQP problem. To
enforce the prediction horizon constraint, we add two auxiliary
variables r̂c and r̂d to the proposed HMLD system in (4). By
including r̂c and r̂d we can keep track of flows and the number
of jumps elapsed. To this end, we rewrite the MLD system
with new variables as follows:

HMLD :


ζ̂+ =

x̂+

r̂+
c

r̂+
d

 =

 Φ(z, δ̂1, δ̂2, x̂, û)

ρ(δ̂1, δ̂2) + rc
1− ρ(δ̂1, δ̂2) + rd


Ψ(z, δ̂1, δ̂2, x̂, û) � 0,

(26)

where ζ̂ := (x̂, r̂c, r̂d), ρ(δ̂1, δ̂2) = δ̂1 + δ̂2− δ̂1δ̂2 and δ̂1, δ̂2, z,
and x̂ are given in (21), Ψ(z, δ̂1, δ̂2, x̂, û) and Φ(z, δ̂1, δ̂2, x̂, û)
are given in (22) and (23), respectively.

Now, considering (21e), z1(`) = ρ(δ̂1(`), δ̂2(`))x̂(`) and
z2(`) = ρ(δ̂1(`), δ̂2(`))û(`), J in (8) is written as

Ĵ (z, ζ̂, û) =

N−1∑
`=0

((
z1(`)>Qcx̂(`) + z2(`)>Rcû(`)

)
+
(
x̂(`)>Qdx̂(`) + û(`)>Rdû(`)

)
−
(
z1(`)>Qdx̂(`) + z2(`)>Rdû(`)

))
+ x̂(N)>Px̂(N).

(27)

with HMLD defined in (26). The corresponding MIQP prob-
lem to Problem 1 to be solved is as follows.

Problem 2: Given an initial condition z0 = (z0, ζ̂0) ∈ Rn×
Rm × Rn × {0} × {0}

minimize Ĵ (z, ζ̂, û)

subject to (z, δ̂1, δ̂2, ζ̂, û) ∈ ŜHMLD (z0)

x̂(N) ∈ X
(rc(N), rd(N)) ∈ T ,

(28)

•
where N ∈ [τp, 2τp] is the terminal time of (z, δ̂1, δ̂2, ζ̂, û),
and ŜHMLD (z0) is the set of solution pairs of HMLD from
z0.

Using (23) and (2), solution to HMLD is derived as follows

x̂(`) =

`−1∑
i=0

Ai
[
B1û(`− 1− i)

+B2ρ(δ̂1(`− 1− i), δ̂2(`− 1− i))
.+B3z(`− 1− i) +B4

]
+A`x̂0,

(29)

for each ` = k + j with (k, j) ∈ dom(x, u) where A and
{Bi}4i=1 are given in (19). Substituting (29) into (27) and (22)
and defining the following vectors

Z(`) =
[
z(`), r̂c(`), r̂d(`), û(`), ρ(δ̂1(`), δ̂2(`))

]>
(30)
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V =

 Z(0)
...

Z(N − 1)

 ,
Problem 2 is formulated as follows.

Problem 3: Given an initial condition Z0 = Z(0) ∈ Rn ×
Rm × Rn × {0} × {0} × Rm × {0, 1}

minimize V>S1V + 2(S2 + x>0 S3)V
subject to F1V � F2 + F3x0,

(31)

where {Si, Fi}3i=1 are appropriately defined. •
Theorem 2: Suppose a solution to Problem 3 is given by

V and Z(`) for all ` ∈ [0, N − 1] is given in (30). Then,
((x(0, , 0), u(0, 0)) , . . . , (x(L, J, ), u(L, J))) is a solution to
Problem 1, where L+ J = N − 1 and


x(k, j) :=

`−1∑
i=0

Ai[B1û(`− 1− i)

+B2ρ(δ̂1(`− 1− i), δ̂2(`− 1− i))
+B3z(`− 1− i) +B4] +A`x̂0,

u(k, j) := û(`),
(32)

for each k =
∑̀
i=1

(δ̂1(i) + δ̂2(i) − δ̂1(i)δ̂2(i)) and j = ` − k

with ` ∈ dom
(
z, r̂c, r̂d, û, ρ(δ̂1, δ̂2)

)
. �

See [15] for a proof of Theorem 2.

C. Implementation of Hybrid MPC using MIQP solver

Using Problem 3, an algorithm for solving a hybrid MPC
problem with an MIQP solver is given as follows.

Algorithm 1: Implementation of Hybrid MPC by using
MIQP Problem 3

Set i = 0, `0 = 0, ζ̂0 = (x̂0, 0, 0);
while true do

Solve Problem 3 to obtain the optimal solution V∗;
while max{r̂c(`− `i), r̂d(`− `i) ≤ τc} do

generate trajectory x̂ using (32);
end
set i = i+ 1, `i = `, ζ̂0 = (x̂(`i), 0, 0)

end

where τc ≤ τp is a positive integer number and used to
parametrize the control horizon. The control horizon regulates
the optimization times and it has the same structure as the
prediction horizon T defined in (7).

In the following, we apply Algorithm 1 to solve the hybrid
MPC problem for different examples.

V. EXAMPLES

Example 2: (Discretized Bouncing Ball) Consider a ball
bouncing vertically on a horizontal surface. In [20, p. 27] the

bouncing ball is modeled as a point mass with height x1 and
vertical velocity x2. The motion of the ball evolves according
to the following equations:

x+
1 = x1+Tsx2−T 2

s δ, x
+
2 = x2−Tsδ when x1 ≥ 0 (33)

x+
1 = x1−Tsx2, x+

2 = −λx2 +u when x1 = 0 x2 ≤ 0,
(34)

where δ = 9.8, λ ∈ [0, 1], and Ts are the gravitational constant,
the coefficient of restitution, and the sample time, respectively.
When x1 ≥ 0, the state x = (x1, x2) evolves according to the
difference equations x+

1 = x1 + Tsx2 − T 2
s δ, x+

2 = x2 −
Tsδ and impacts occur when the ball reaches the surface with
nonpositive velocity; i.e., when x1 = 0 and x2 ≤ 0. At this
point the state is reset according to the difference equations
x+

1 = x1−Tsx2, x+
2 = −λx2+u. The data of the discretized

hybrid dynamical system in (1) for this example is presented
as follows

Af =

[
1 Ts
0 1

]
, Ag =

[
1 −Ts
0 −λ

]
,

cf =

[
−T 2

s δ
−Tsδ

]
, cg =

[
0
0

]
, (35)

Bf =

[
0
0

]
, Bg =

[
0
1

]
,

X = {(x, u)|x ∈ [0, 10]×[−10, 10], u ∈ [−0.01, 0.01]}∩LV (c),

C = {(x, u) ∈ X : x1 ≥ 0}, (36)

D = {(x, u) ∈ X : x1 = 0, x2 ≤ 0}, (37)

where LV (c) is the sublevel set of function V (x1, x2) =
1
2x

2
2 + δx1 for a constant c. We need to restrict C and D

to a compact set that is forward invariant. To this end, the set
X is defined to be the sublevel set of the function V (x1, x2)
which is a Lyapunov function for the system [21]. To represent
the flow and jump sets, in (36) and (37), in the form given in
Assumption 1, we choose the functions h1(x1, x2) = −x1,
h2(x1, x2) = −x2 and σi = 0 for each i ∈ {1, 2}. The
control objective is to minimize the cost functional (8) with
Qc = 0.2I2, Rc = 0.01, Qd = 0.2I2, Rd = 0.01, and
P = 0.1I2. Also, the prediction and control horizon are
given with τp = 2 and τc = 1, respectively. As shown in
Fig. 3, when (x, u) ∈ C \ D, then ρ(δ̂1, δ̂2) = 1 and the
solution flows according to f(x, u) = Afx + Bfu. When
(x, u) ∈ D \ C, then ρ(δ̂1, δ̂2) = 0 and the solution jumps
according to g(x, u) = Agx+Bgu. Finally, if (x, u) ∈ C∩D,
then ρ(δ̂1, δ̂2) ∈ {0, 1} and the solution will either jump or
flow, and also the control input has adhered to the intended
restriction as given in X . 2 �

2Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/HybridMPCMLDBouncingBall.git
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Fig. 3: The solution of the bouncing ball with input resulting
from transforming the linear discretized hybrid system into an
MLD system.
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Fig. 4: State Trajectory of TCP in Example 3.

In the next example, we present a congestion control mech-
anism using in models of transmission control protocols (TCP)
with a limit cycle. 3

Example 3: Consider the congestion control mechanism
given by the hybrid system [22]:



[
q̇
ṙ

]
=

[
r −B
a

]
when q ∈ [0, qmax]

[
q+

r+

]
=

[
qmax

mr

]
when q = qmax, r ≥ B.

(38)

The flow map is discretized by the sample time Ts = 0.001 to
present (38) as a discretized hybrid dynamical system as (1).
with data as follows:

3Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/HybridMPCMLDCongestionControl.git

Af =

[
1 0
0 1

]
+ TsI2, Ag =

[
0 0
0 m

]
,

cf = Ts

[
−B
a

]
, cg =

[
qmax

0

]
,

Bf =

[
0
0

]
, Bg =

[
0
0

]
.

In Fig 4, the solution obtained by an MIQP solver approachs a
limit cycle with one jump per period with parameters B = 1,
a = 1, m = 0.25, and qmax = 0.25. The initial condition for
the simulation is P0 = (B2

2a , 0) = (0.5, 0). When the solution
reaches to point P1, it jumps to P2 and then flows to P1,
and this repetition makes a limit cycle with initial point of
P2 = (1, 0.4). �

In the next example, we add MPC to the system given in
Example 1 and solve the hybrid MPC problem via MIQP
solvers.

Example 4: Consider the hybrid system Hd given in Ex-
ample 1, and cost functional (8) with Qc = 0.2I2, Rc = 0.1,
Qd = 0.1I2, Rd = 0.1, and P = 0.01I2. The prediction and
control horizon are given as τp = 2 and τc = 1, respectively.4

Fig. 5: Model predictive control of system (1) in Example 4
resulting from problem 3.

As shown in Fig. 5, when (x, u) ∈ C\D, then ρ(δ̂1, δ̂2) = 1
and the solution flows according to x+ = f(x, u) = Afx +
Bfu. Furthermore, when (x, u) ∈ D \ C, then ρ(δ̂1, δ̂2) = 0
and the solution jumps according to x+ = g(x, u) = Agx +
Bgu. Finally, if (x, u) ∈ C ∩D, then ρ(δ̂1, δ̂2) ∈ {0, 1} and
the solution either jumps or flow. Note that the control input
has adhered to the intended restriction as given in X . �

VI. CONCLUSION

In this paper, a new mixed-integer model predictive control
approach for discretized hybrid systems is presented. To

4Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/HybridMPCMLD2Dsystem.git
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solve the formulated MPC problem for the discretized hybrid
dynamical system, boolean algebra is employed to formulate
a mixed integer quadratic program for the transformed MLD
system. The proposed approach consists of converting the
discretized hybrid system into a nonlinear discrete-time system
and transforming the converted nonlinear discrete-time system
into an MLD system using McCormick Relaxation. Our results
establish that solving MPC for the discretized hybrid dynami-
cal system, namely Hd in (1) is equivalent to solving Problem
3 for the MLD system, namely HMLD in (26). The proposed
MPC algorithm for the discretized hybrid system is applied to
several examples.
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APPENDIX

A. Intermediate Step: Converting the discretized hybrid con-
trol system Hd into a nonlinear discrete-time system (Step 1)

We introduce a new state x̃ and input ũ, which play the role
of x and u in Hd, respectively. The new discrete-time control
system is defined as

H̃d :



x̃+ ∈
⋃

uf1 ∈ U1(x̃, ũ)

uf2 ∈ U2(x̃, ũ)

{
ρ(uf1, uf2)f(x̃, ũ)

+ (1− ρ(uf1, uf2))g(x̃, ũ)
}

(x̃, ũ) ∈ C ∪D,
(39)

where ρ(uf1, uf2) = uf1 +uf2−uf1uf2 determines whether
the state x̃ flows or jumps, and C and D are given in (10) and
(11), respectively. A notion of a solution to H̃d is defined as
follows.

Definition 4: A function M 3 ` 7→
(x̃(`), ũ(`), uf1(`), uf2(`)) is a solution to H̃d in (39)
if it satisfies

x̃(`+ 1) ∈
⋃

uf1(`) ∈ Uf1(x̃, ũ)

uf2(`) ∈ Uf2(x̃, ũ)

{
(uf1(`) + uf2(`)

−uf1(`)uf2(`)) f(x̃(`), ũ(`))

+ (1− (uf1(`) + uf2(`)− uf1(`)uf2(`))) g(x̃(`), ũ(`))
}

(40)
for all ` ∈M such that `+ 1 ∈M , where M is of the form
{0, 1, . . . ,K}, with K finite, or equal to N. When M = N,
the solution is said to be complete. •

The following result establishes a relationship between the
solutions to Hd in (1) and to H̃d in (39). See [15] for a proof.

Lemma 2: For each solution (k, j) 7→ (x(k, j), u(k, j))
to Hd in (1), the function ` 7→ (x̃(`), ũ(`), uf1(`), uf2(`))
defined as

x̃(`) := x(k, j), ũ(`) := u(k, j),
uf1(`) ∈ Uf1(x(k, j), u(k, j)),
uf2(`) ∈ Uf2(x(k, j), u(k, j)),

(41)

for each ` = k + j with (k, j) ∈ dom(x, u), is a
solution to H̃d in (39). Also, for each solution ` 7→
(x̃(`), ũ(`), uf1(`), uf2(`)) to H̃d, the function (k, j) 7→
(x(k, j), u(k, j)) defined as

x(k, j) := x̃(`), u(k, j) := ũ(`), (42)

for each k =
∑̀
i=1

(uf1(i)+uf2(i)−uf1(i)uf2(i)) and j = `−k

with ` ∈ dom(x̃, ũ, uf1, uf2), is a solution to Hd. �

https://hybrid.soe.ucsc.edu/sites/default/files/preprints/TR-HSL-03-2022.pdf
https://hybrid.soe.ucsc.edu/sites/default/files/preprints/TR-HSL-03-2022.pdf
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
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